DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model.

نویسندگان

  • Lan-Szu Chou
  • C-S Jonathan Liu
  • Benjamin Boese
  • Xinmin Zhang
  • Rong Mao
چکیده

BACKGROUND The introduction and use of next-generation sequencing (NGS) techniques have taken genomic research into a new era; however, implementing such powerful techniques in diagnostics laboratories for applications such as resequencing of targeted disease genes requires attention to technical issues, including sequencing template enrichment, management of massive data, and high interference by homologous sequences. METHODS In this study, we investigated a process for enriching DNA samples that uses a customized high-density oligonucleotide microarray to enrich a targeted 280-kb region of the NF1 (neurofibromin 1) gene. The captured DNA was sequenced with the Roche/454 GS FLX system. Two NF1 samples (CN1 and CN2) with known genotypes were tested with this protocol. RESULTS Targeted microarray capture may also capture sequences from nontargeted regions in the genome. The capture specificity estimated for the targeted NF1 region was approximately 60%. The de novo Alu insertion was partially detected in sample CN1 by additional de novo assembly with 50% base-match stringency; the single-base deletion in sample CN2 was successfully detected by reference mapping. Interferences by pseudogene sequences were removed by means of dual-mode reference-mapping analysis, which reduced the risk of generating false-positive data. The risk of generating false-negative data was minimized with higher sequence coverage (>30x). CONCLUSIONS We used a clinically relevant complex genomic target to evaluate a microarray-based sample-enrichment process and an NGS instrument for clinical resequencing purposes. The results allowed us to develop a systematic data-analysis strategy and algorithm to fit potential clinical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays.

We report a flexible method for selective capture of sequence fragments from complex, eukaryotic genome libraries for next-generation sequencing based on hybridization to DNA microarrays. Using microfluidic array architecture and integrated hardware, the process is amenable to complete automation and does not introduce amplification steps into the standard library preparation workflow, thereby ...

متن کامل

Sequence Capture and Next Generation Resequencing of the MHC Region Highlights Potential Transplantation Determinants in HLA Identical Haematopoietic Stem Cell Transplantation

How cells coordinate the immune system activities is important for potentially life-saving organ or stem cell transplantations. Polymorphic immunoregulatory genes, many of them located in the human major histocompatibility complex, impact the process and assure the proper execution of tolerance-versus-activity mechanisms. In haematopoietic stem cell transplantation, on the basis of fully human ...

متن کامل

An Evaluation of Different Target Enrichment Methods in Pooled Sequencing Designs for Complex Disease Association Studies

Pooled sequencing can be a cost-effective approach to disease variant discovery, but its applicability in association studies remains unclear. We compare sequence enrichment methods coupled to next-generation sequencing in non-indexed pools of 1, 2, 10, 20 and 50 individuals and assess their ability to discover variants and to estimate their allele frequencies. We find that pooled resequencing ...

متن کامل

Sequence capture and next-generation resequencing of multiple tagged nucleic acid samples for mutation screening of urea cycle disorders.

BACKGROUND Molecular genetic testing is commonly used to confirm clinical diagnoses of inherited urea cycle disorders (UCDs); however, conventional mutation screenings encompassing only the coding regions of genes may not detect disease-causing mutations occurring in regulatory elements and introns. Microarray-based target enrichment and next-generation sequencing now allow more-comprehensive g...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical chemistry

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2010